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Abstract

Let M be a compact manifold with a spin structureχ and a Riemannian metricg. Let λ2
g be the

smallest eigenvalue of the square of the Dirac operator with respect tog andχ. Theτ-invariant is
defined as

τ(M,χ) := sup inf
√
λ2
gVol(M,g)1/n

where the supremum runs over the set of all conformal classes onM, and where the infimum runs
over all metrics in the given class.

We show thatτ(T 2, χ) = 2
√
π if χ is “the” non-trivial spin structure onT 2. In order to calculate

this invariant, we study the infimum as a function on the spin-conformal moduli space and we show
that the infimum converges to 2

√
π at one end of the spin-conformal moduli space.
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1. Introduction

Let (M,g, χ) be a compact spin manifold of dimensionn ≥ 2. For any metric ˜g in the
conformal class [g] of g, let λ1(D2

g̃) be the smallest eigenvalue of the square of the Dirac
operator. We define

λmin(M,g, χ) = inf
g̃∈[g]

√
λ1(D2

g̃) Vol(M, g̃)1/n.

Several works have been devoted to the study of this conformal invariant and some variants
of it [17,22,8,2–4]. J. Lott[22,2]proved thatλmin(M,g, χ) = 0 if and only if kerDg �= {0}.
From[17,8] we deduceλmin(Sn) = n

2ω
1/n
n , whereSn is the sphere with constant sectional

curvature 1 and whereωn is its volume. Furthermore, in[2,6], we have seen that

λmin(M,g, χ) ≤ λmin(Sn) = n

2
ω1/n
n (1)

for all Riemannian spin manifolds.
Furthermore, we define

τ(M,χ) := supλmin(M,g, χ)

where the supremum runs over all conformal classes onM. Obviously,τ(M,χ) is an invariant
of a differentiable manifold with spin structure.

We consider it as interesting to determineτ or at least some bounds forτ in as many
cases as possible. There are several motivations for studying these invariantsλmin(M,g, χ)
andτ(M,χ).

Our first motivation is the analogy and the relation to Schoen’sσ-constant, which is
defined as

σ(M) := sup inf

∫
Scalg dvg

Vol(M,g)(n−2)/n

where the infimum runs over all metrics in a conformal classg ∈ [g0], and where the
supremum runs over all conformal classes.

In the caseσ(M) ≥ 0 andn ≥ 3, there is also an alternative definition of theτ-invariant
that is analogous to our definition of theτ-invariant. More exactly, in this case

σ(M) := sup infλ1(Lg)Vol(M,g)2/n,

where λ1(Lg) is the first eigenvalue of the conformal LaplacianLg :=
4(n− 1)/(n− 2)�g + Scalg. Once again, the infimum runs over all metrics in a
conformal classg ∈ [g0], and where the supremum runs over all conformal classes. Many
conjectures about the value of theσ-constant exist, but unfortunately it can be calculated
only in very few special cases, e.g.σ(Sn) = n(n− 1)ω2/n

n , σ(Sn−1 × S1) = n(n− 1)ω2/n
n ,

σ(T n) = 0 andσ(RP3) = n(n− 1)(ωn/2)2/n. The reader might consult[13] for a very
elegant and amazing calculation ofσ(RP3) and for a good overview over further literature.
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For other quotients of the sphere�\Sn, � ⊂ O(n+ 1) it is conjectured that

σ(�\Sn) = n(n− 1)
(ωn

#�

)2/n
. (2)

It is not difficult to show that for any metric conformal to the round metric on�\Sn one
has the inequalityλ1(Lg)Vol(�\Sn, g)2/n ≥ n(n− 1)(ωn/#�)2/n. This immediately im-
pliesσ(�\Sn) ≥ n(n− 1)(ωn/#�)2/n, i.e. the lower bound onσ in (2). However, it is very
difficult to obtain the upper bound onσ.

Theτ-invariant is not only a formal analogue to Schoen’sσ-constant, but it is also tightly
related to it via Hijazi’s inequality[17–19]. Hijazi’s inequality implies that ifM carries a
spin structureχ, then

τ(M,χ)2 ≥ n

4(n− 1)
σ(M). (3)

Equality is attained in this inequality ifM = Sn. Hence, upper bounds forτ(M,χ) may
help to determine theσ-constant.

This is one reason for studying theτ-invariant.
Another motivation for studyingτ(M,χ) andλmin(M,g, χ) comes from the connection

to constant mean curvature surfaces. Letn = 2. If g̃ is a minimizer that attains the infimum
in the definition ofλmin(M,g, χ), and if Vol(M, g̃) = 1, then any simply connected open
subsetU of M can be isometrically embedded intoR3, (U, g̃) ↪→ R

3, such that the resulting
surface has constant mean curvatureλmin(M,g, χ). Vice versa, any constant mean curvature
surface gives rise to a stationary point of an associated variational principle. It is shown in
[4] that minimizers ofλmin(M,g, χ) exist if λmin(M,g, χ) < 2

√
π.

Our third motivation comes from the search for metrics without harmonic spinors
or with only few harmonic spinors. Let againn ≥ 2 be arbitrary. As indicated above,
λmin(M,g, χ) > 0 if and only if kerDg = {0}. Hence,τ(M,χ) > 0 if and only ifM carries a
metric with kerD = {0}. It follows from the Atiyah-Singer index theorem that any spin man-
ifold M of dimension 4k, k ∈ Nwith Â(M) �= 0 hasτ = 0, and the same holds for spin mani-
folds of dimension 8k + 1 and 8k + 2 with non-vanishingα-genus. C. B̈ar conjectures[9,10]
that in all remaining cases one hasτ > 0. Using perturbation methods Maier[23] has veri-
fied the conjecture in the casen ≤ 4. The conjecture also holds ifn ≥ 5 andπ1(M) = {e}.
Namely, if M is a compact simply connected spin manifold with vanishingα-genus, then
building on Gromov–Lawson’s surgery results[16] Stolz showed[27] thatM carries a metric
g+ of positive scalar curvature. Applying the Schrödinger-Lichnerowicz formula we obtain
kerDg+ = {0}, and henceτ(M,χ) ≥ λmin(M,g+, χ) > 0 for the unique spin structureχ
onM. A good reference for this argument is also[10], where the interested reader can also
find an analogous statement for the caseα(M,χ) �= 0. The method of Stolz and Bär-Dahl
also applies to some other fundamental groups, but the general case still remains open.

In the present article we want to have a closer look at theτ-invariant on surfaces, in
particular 2-dimensional tori. The higher dimensional case will be the subject of another
publication.

On surfaces the Yamabe operator cannot be defined as above. The Gauss-Bonnet theorem
says that theσ-constant of a surface does not depend on the metric:

σ(M) = sup inf
∫

2Kg dvg = 4πχ(M).
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It was conjectured by Lott[22] and proved by C. B̈ar[8] that Eq.(3)also holds in dimension
2. This amounts in showingτ(S2) = 2

√
π. If M is a compact orientable surface of higher

genus, then inequality(3) is trivial.
We will calulate theτ-invariant for the 2-dimensional torusT 2. The 2-dimensional torus

T 2 has 4 different spin structures. The diffeomorphism group Diff(T 2) acts on the space of
spin structures by pullback, and the action has two orbits: one orbit consisting of only one
spin structure, the so-calledtrivial spin structure χtr and another orbit consisting of three
spin structures. The torusT 2 equipped with the trivial spin structure has non-vanishing
α-genus, thusτ = 0. The main result of this article is the following theorem.

Theorem 1.1. Let χ be a non-trivial spin structure on the 2-dimensional torus T 2. Then

τ(T 2, χ) = 2
√
π(= λmin(S2)).

More exactly, for a fixed non-trivial spin structureχ we will studyλmin(M,g, χ) as a
function on the spin-conformal moduli spaceM. We show that it is continuous (Proposition
3.1), and we show that it can be continuously extended to the natural 2-point compactification
ofM, i.e. the compactification where both ends are compactified by one point each. It will
be easy to show thatλmin(M,g, χ) → 0 at one of the ends. However, it is much more
involved to proveTheorem 3.2which states thatλmin(M,g, χ) → λmin(S2) = 2

√
π at the

other end.
It is evident thatTheorem 3.2impliesTheorem 1.1.
For theProof of Theorem 3.2, we have to establish a qualitative lower bound for the

eigenvalues. One important ingredient in theProof of Theorem 3.2is to study a suitable
covering of the 2-torus by a cylinder, and to lift a test spinor to this covering. Using a
cut-off argument in a way similar to[5] we obtain a compactly supported test spinor on the
cylinder. After compactifying the cylinder conformally to the sphereS2, we can use B̈ar’s
2-dimensional version of(3), to proveλmin(M,g, χ) → λmin(S2) = 2

√
π at the other end.

Theorems 3.2 and 1.1should be seen as a spinorial analogue of[26]. In that article, Schoen
studies the Yamabe invariant on the moduli space ofO(n)-invariant conformal structures
onS1 × Sn−1, n ≥ 3. He shows that at one end of this moduli space, the Yamabe invariant
converges to the Yamabe invariant ofSn, and henceσ(S1 × Sn−1) = σ(Sn). Combining this
result with the Hijazi inequality andTheorem 1.1, one obtains

Corollary 1.2. Let n ≥ 2. Then

τ(Sn−1 × S1, χ) =



0 if n = 2 and if χ is trivial,
n

2
ω1/n
n otherwise

The structure of the article is as follows.
In Section2, we define the spin-conformal moduliM space of 2-tori and recall some

well known facts. In Section3, we state and explain our results. In Sections4, we recall
some preliminaries which will be useful for theProof of Theorem 3.2. In Section5 the
proof is carried out.
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2. The spin-conformal moduli space of T 2

At the beginning of this section we will recall the definition of a spin structure. We will
only give it in the casen = 2. For more information and for the case of general dimension
we refer to standard text books[15,21,25,12]. More details about the 2-dimensional case
can be obtained in[5] and[1,11].

Let (M,g) be an oriented surface with a Riemannian metricg. LetPSO(M,g) denote the
set of oriented orthonormal frames overM. The base point mapPSO(M,g) → M is anS1

principal bundle. Letα : S1 → S1 be the non-trivial double covering, i.e.α(z) = z2. A spin
structure on (M,g) is by definition a pair (P, χ) whereP is anS1 principal bundle overM
and whereχ : P → PSO(M,g) is a double covering, such that the diagram

P × S1 → P

↘
↓ χ× α ↓ χ M

↗
PSO(M) × S1 → PSO(M)

(4)

commutes (in this diagram the horizontal flashes denote the action ofS1 onP andPSO(M)).
By slightly abusing the notation we will sometimes writeχ for the spin structure, assum-
ing that the domainP of χ is implicitly given. Two spin structures (P, χ) and (P̃, χ̃) are
isomorphic if there is anS1-equivariant bijectionb : P → P̃ such that ˜χ = χ ◦ b.

If g̃ = f 2g is a metric conformal tog. Then PSO(M, g̃) → PSO(M,g), (e1, e2) →
(fe2, fe2) defines an isomorphism ofS1 principal bundles. The pullback of a spin structure
on (M,g) is a spin structure on (M, g̃).

In a similar way, if (M1, g1) → (M2, g2) is an orientation preserving conformal map,
but not necessarily a diffeomorphism, then any spin structure on (M2, g2) pulls back to a
spin structure on (M1, g1).

Examples 2.1.

(1) If g0 is the standard metric onS2. ThenPSO(S2, g0) = SO(3), and the base point map
SO(3)→ S2 is the map that associates to a matrix in SO(3) the first column. The double
cover SU(2)→ SO(3) defines a spin structure on (S, g0).

(2) Let g̃ be an arbitrary metric onS2. After a possible pullback by a diffeomorphism
S2 → S2 we can write ˜g = f 2g0. The pullback of the spin structure given in (1) under
the isomorphismPSO(S2, g̃) → PSO(S2, g0) defines a spin structure on (S2, g̃).

(3) Let g1 be a flat metric on the torusT 2. Then a parallel frame gives rise to a (global)
section ofPSO(T 2, g1) → T 2. Hence, this is a trivialS1 principal bundle. The trivial
fiberwise double coveringT 2 × S1 → T 2 × S1, (p, z) → (p, z2) defines a spin struc-
ture on (T 2, g1), the so-calledtrivial spin structure χtr on (T 2, g1).

(4) If g̃ is an arbitrary metric onT 2. Then we can write ˜g = f 2g1 whereg1 is a flat metric.
As above, the trivial spin stucture on (T 2, g1) defines a spin structure on (T 2, g̃). This
spin structure is also called thetrivial spin structure χtr.
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(5) For (x0, y0) ∈ R2 \ {0} we define

Zx0,y0 = R2/〈(x0, y0)〉

where〈(x0, y0)〉 is the subgroup ofR2 spanned by (x0, y0). We will assume that it
carries the metric induced by the euclidean metricgeucl on R2. ThenPSO(Zx0,y0) is
a trivial bundle, and a natural trivialization is obtained by a parallel frame. The map
Zx0,y0 × S1 → Zx0,y0 × S1, (p, z) → (p, z2) defines a spin structure onZx0,y0, the
trivial spin structure onZx0,y0.

Assume thatχ : P → PSO(M,g) is a spin structure on a surface, and assume thatβ :
π1(M) → {−1,+1} is a group homomorphism. Then there is a{−1,+1} principal bundle
Bβ → M with holonomyβ. Let Pβ be the quotient ofP × Bβ by the diagonal action of
{−1,+1}. ThenPβ together with the induced mapχβ : Pβ → PSO(M,g) is also a spin
structure on (M,g). Conversely, if (̃P, χ̃) is another spin structure, then one can show that
there is a uniqueβ : π1(M) → {−1,+1} such that (̃P, χ̃) and (Pβ, χβ) are isomorphic.
Thus, we see that the space of spin structures is an affine space over the{−1,+1}-vector
space Hom(π1(M), {−1,+1}) = H1(M, {−1,+1}).

Examples 2.2.

(1) Any compact oriented surfaceM carries a spin structure. Ifk denotes the genus ofM,
then there are 4k homomorphismsπ1(M) → {−1,+1}, hence there are 4k isomorphism
classes of spin structures. In particular, the spin structure onS2 is unique.

(2) Because ofπ1(Zx0,y0) = Z, there are exactly two spin structures onZx0,y0, the trivial
one and another one called thenon-trivial spin structure.

From now on, letM = T 2 = R2/� where� is a lattice inR2. The trivial spin structure
defined above can be used to identify Hom(π1(M), {−1,+1}) with the set of isomorphism
classes of spin structures. By slightly abusing the language we will always writeχ for the
spin structure (P, χ) and also for the homomorphismπ1(M) → {−1,+1}.

The following lemma summarizes some well-known equivalent characterizations of triv-
iality of χ (see e.g.[21,24,1,14]).

Lemma 2.3. With the above notations, the following statements are equivalent

(1) The spin structure is trivial (in the above sense);
(2) χ(γ) = 1 for all γ ∈ �;
(3) The spin structure is invariant under the natural action of the diffeomorphism group

Diff( T 2);
(4) (T 2, χ) is the non-trivial element in the 2-dimensional spin-cobordism group;
(5) The α-genus of (T 2, χ) is the non-trivial element in Z/2Z;
(6) The Dirac operator has a non-trivial kernel;
(7) The kernel of the Dirac operator has complex dimension 2.
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In particular, we easily see

τ(T 2, χtr) = 0.

From now on, in the rest of this article, we assume thatχ is not the trivial spin structure,
i.e.χ(γ) = −1 for someγ ∈ �.

Definition 2.4. Two 2-dimensional tori with Riemannian metrics, orientations and spin
structures are said to bespin-conformal if there is a conformal map between them preserving
the orientation and the spin structure. “Being spin-conformal” is obviously an equivalence
relation. Thespin-conformal moduli spaceM of T 2 with the non-trivial spin structure is
defined to be the set of these equivalence classes. Furthermore we define

M1 :=
{(

x

y

)∣∣∣∣∣|x| ≤ 1

2
, y2 +

(
|x| − 1

2

)2

≥ 1

4
, y > 0

}

(see alsoFig. 1).

Lemma 2.5. Let g be a Riemannian metric on T 2 = R2/Z2, and let χ : Z2 → {−1,+1}
be a non-trivial spin structure. Then there is a lattice � ⊂ R2, a spin structure χ′ : � →
{−1,+1}, such that

(1) � is generated by

(
1

0

)
and

(
x

y

)
with

(
x

y

)
∈M1

(2) (T 2, g, χ) is spin-conformal to (R2/�, geucl, χ
′)

(3) χ′
((

1

0

))
= +1 and χ′

((
x

y

))
= −1.

Proof. Because of the uniformization theorem we can assume without loss of generality
thatg is a flat metric. The lemma then follows from elementary algebraic arguments.�

Note thatx and y are uniquely determined if

(
x

y

)
is in the interior ofM1, i.e. if

|x| < 1/2 andy2 + (|x| − 1/2)2 > 1/4. If

(
x

y

)
is on the boundary ofM1, theny and|x|

are determined, but not the sign ofx. Hence, after gluing

(
x

y

)
∈ ∂M1 with

(
−x
y

)
we

obtain the spin-conformal moduli spaceM.

Notation. Let (x0, y0) ∈M1. The lattice generated by

(
1

0

)
and

(
x

y

)
is noted as

�x0,y0. Furthermore, we writeTx0,y0 for the 2-dimensional torusR2/�x0,y0 equipped with
the euclidean metric.
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Fig. 1. The spin conformal moduli space isM =M1/ ∼, where∼ means identifying (x, y) ∈ ∂M1 with (−x, y).

The quantityλmin(T 2, g, σ) is a spin-conformal invariant, henceλmin can be viewed as
a function onM or onM1.

3. Main results

In this article, we studyλmin as a function on the spin-conformal moduli space with the
non-trivial spin structure. This function takes values in [0, λmin(S2)] because of(1). As the
spin structure is non-trivial, Lott’s results states that 0 is not attained. As a preliminary result
we will prove that this function is continuous.

Proposition 3.1. The function

λmin :

∣∣∣∣∣M1 → ]0, λmin(S2)]

(x0, y0) → λ
x0,y0
min

is continuous onM1.

The spin-conformal moduli spaceM (resp.M1) has two ends. We will compactify each
end by adding one point. The point added at the endy → ∞ will be denoted by∞ and the
point added at the endy → 0 is denoted by (0,0).

Theorem 3.2. The function

λmin :

∣∣∣∣∣M1 → ]0, λmin(S2)]

(x0, y0) → λ
x0,y0
min
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extends continuously to M1 ∪ {(0,0),∞} by setting λ
0,0
min = λmin(S2) and

λ∞
min = 0.

The continuous extension at∞ is is easy to see. The first eigenvalue of the Dirac operator
on (Tx0,y0, geucl, χx0,y0), isπ/y0, the area isy0, hence

λ
x0,y0
min ≤ π/

√
y0 → 0 fory0 → ∞.

However, the limit (x0, y0) → (0,0) is much more difficult to obtain.
Clearly,Theorem 3.2impliesTheorem 1.1.

4. Some preliminaries

4.1. Variational characterization of λmin

Let (M,g, χ) be a compact spin manifold of dimensionn ≥ 2 with kerDg = {0}. For
ψ ∈ �(�M), we define

Jg(ψ) = (
∫
M

|Dψ|2n/n+1dvg)n+1/n

| ∫
M

〈Dψ,ψ〉dvg| .

Lott [22] proved that

λmin(M, [g], χ) = inf
ψ
Jg(ψ) (5)

where the infimum is taken over the set of smooth spinor fields for which

(∫
M

〈Dψ,ψ〉dvg
)

�= 0.

The functionalJg for the torusTx0,y0 is noted asJx0,y0.

Remark 4.1. The exponents inJg are chosen such thatJg is conformally invariant. More
exactly, ifg andg̃ are conformal, then the spinor bundles of (M,g, χ) and (M, g̃, χ) can be
identified in such a way thatJg(ψ) = Jg̃(ψ).

4.2. Cylinders and doubly pointed spheres

LetZx0,y0 be defined as inExamples 2.1(5).

Lemma 4.2 (Mercator, around 1569).LetN, S ∈ S2 be respectively the North pole and the
South pole of S2. Then there is a conformal diffeomorphism Fx0,y0 from (Zx0,y0, geucl) to
(S2 \ {N, S}).
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Proof. In the case (x0, y0) = (0,2π) we see that the application

F0,2π :

(
x

y

)
→




siny
coshx
cosy
coshx

tanhx




is conformal and defines a conformal bijectionZ0,2π → S2 \ {N, S}. The general case
follows by composing with a linear conformal mapZx0,y0 → Z0,2π. �

The mapF induces a map between the frame bundles.

F̃x0,y0 : PSO(Zx0,y0) → PSO(S2)

F̃x0,y0((p,X, Y )) :=
(
Fx0,y0(p),

dFx0,y0(X)
|dFx0,y0(X)| ,

dFx0,y0(Y )
|dFx0,y0(Y )

)
X, Y ∈ TpZx0,y0 are orthonormal and oriented

The unique spin structure onS2 pulls back to a spin structure onZx0,y0, that we will denote
asχx0,y0.

Lemma 4.3. The spin structure χx0,y0 is the non-trivial spin structure on Zx0,y0.

Proof. We will show the lemma for the case (x0, y0) = (0,2π). As before, the general case
then follows by composing with a linear mapZx0,y0 → Z0,2π.

We define the loopγ : [0,2π] → Z0,2π, γ(t) := (0, t) and the parallel section

α : t →
(
∂

∂x
|γ(t),

∂

∂y
|γ(t)

)

of PSO(Z0,2π) alongγ. The spin structure (P, χ0,2π) onZ0,2π is trivial if and only if there
is a sectioñα of P alongγ such thatχ0,2π ◦ α̃ = α andα̃(0) = α̃(2π).

The compositioñF0,2π ◦ α is a section ofPSO(S2) = SO(3) alongF0,2π ◦ γ. One checks
that

F̃0,2π ◦ α(t) =
(
∂F0,2π

∂x
|(0,t), ∂F0,2π

∂y
|(0,t), F (0, t)

)
=




0 cosy siny

0 − siny cosy

1 0 0




We lift this loop to a patĥα in SU(2), then one easily sees thatα̂(0) = −α̂(2π). Asχ0,2π is
defined as the pullback of the spin structure onS2, we see that any lift̃α of α also satisfies
α̃(0) �= α̃(2π). Hence, we have proved non-triviality ofχ0,2π. �

Corollary 4.4. Let Zx0,y0 carry its non-trivial spin structure. Then,

(
∫
Zx0,y0

|Dψ|4/3dx)3/2

| ∫
Zx0,y0

〈ψ,Dψ〉dx| ≥ λmin(S2)
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for any compactly supported spinor ψ ∈ �(�Zx0,y0) such that
∫ 〈ψ,Dψ〉 �= 0.

Let f : Zx0,y0 → ]0,+∞[ be such thatF∗
x0,y0

g0 = f 2geucl. It is well known (see for
example[20,17]) thatFx0,y0 induces a pointwise isometry

∣∣∣∣∣�(Tx0,y0, geucl) → �(S2 \ {N, S}, g0)

ψ → ψ̄,

such that

D̄f−(1/2)ψ̄ = f−(3/2)Dψ.

whereD̄ denotes the Dirac operator onS2. Moreover,ψ̄ is smooth onS2 sinceψ ≡ 0 in a
neighborhood ofN andS. It is well known that the functionalJ defined at the beginning of
Section4 is conformally invariant. This implies that

(
∫
Zx0,y0

|Dψ|4/3 dx)3/2

| ∫
Zx0,y0

〈ψ,Dψ〉dx| = (
∫
S2 |D̄(f−(1/2)ψ̄)|4/3dvg0)

3/2

| ∫
S2〈f−(1/2)ψ̄, D̄(f−(1/2)ψ̄)〉dvg0|

≥ λmin(S2).

5. Proof of the main results

For the proof we will need the following well known elliptic estimates. These estimates
are a consequence of techniques explained for example in[28], see also[7]. However, in
our special situation a proof is much easier. Hence, for the convenience of the reader we
will include an elementary proof here.

Lemma 5.1 (Elliptic estimates).Let (x0, y0) ∈M1, and note T 2 for Tx0,y0. There exists
C > 0 depending only on x0 and y0 such that∫

T 2
|Dψ|4/3dvg ≥ C

∫
T 2

|∇ψ|4/3dvg (6)

and (∫
T 2

|ψ|4dvg
)1/3

≤ C

∫
T 2

|∇ψ|4/3dvg (7)

for any smooth spinor ψ.

Proof. Letq = 4
3. Assume that(6) is false. Then, for allε > 0, we can find a smooth spinor

ψε ∈ �(�(T 2)) such that∫
T 2

|Dψε|qdvg ≤ ε and
∫
T 2

|∇ψε|qdvg = 1. (8)
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Now, assume that

lim
ε→0

(∫
T

|ψε|q dvg
)1/q

= +∞.

Then, we set

ψ′
ε = ψε

(
∫
T 2 |ψε|qdvg)1/q

.

The sequence (ψ′
ε) is bounded inW1,q(T 2) and sinceW1,q(T 2) is reflexive, we can findψ′

0 ∈
W1,q(T 2) such that there is sequenceεi → 0, with limi→∞ ψ′

εi
= ψ′

0 weakly inW1,q(T 2).
Then, we would have

∫
T 2

|∇ψ′
0|qdvg ≤ lim inf

ε

∫
T 2

|∇ψ′
ε|qdvg = 0

We would get thatψ′
0 is parallel which cannot occur since the structure onT 2 is not trivial.

This proves that (ψε) is bounded inLq(T 2) and hence, by(8) in W1,q(T 2). Again by
reflexivity ofW1,q(T 2), we get the existence of a spinorψ0, weak limit of a subsequence
ψεi in W1,q(T 2). By weak convergence ofDψεi toDψ0 in Lq(T 2), we have

∫
T 2

|Dψ0|qdvg ≤ lim inf
i

∫
T 2

|Dψεi |qdvg = 0.

This is impossible since the Dirac operator onT 2 has a trivial kernel. This proves(6). As
one can check, relation(7) can be proved with the same type of arguments.�

Proof of Proposition 3.1. The proposition states thatλmin is continuous onM1. Let
(xk, yk)k ∈M1 be a sequence tending to (x0, y0) ∈M1. We identify T 2 with R2/Z2.
The conformal structures corresponding to (xk, yk) and (x0, y0) are represented by flat
metricsgxk,yk and gx0,y0 on R2/Z2, that are invariant under translations, and such that
gxk,yk → gx0,y0 in theC∞-topology.

Let ε > 0 be small and letψ0 and (ψk)k be smooth spinors such that

Jx0,y0(ψ0) ≤ λ
x0,y0
min + εandJxk,yk (ψk) ≤ λ

xk,yk
min + ε.

At first, since (gxk,yk )k tends togx0,y0, it is easy to see that

lim
k
Jxk,yk (ψ0) = Jx0,y0(ψ0)
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and hence lim supk λ
xk,yk
min ≤ λ

x0,y0
min + ε for the givenε > 0 that we can choose as small as

we want. Thus

lim sup
k

λ
xk,yk
min ≤ λ

x0,y0
min .

Now, let us prove that

lim sup
k

Jx0,y0(ψk) ≤ lim inf
k

Jxk,yk (ψk) (9)

We let (v,w) be a orthormal basis forgx0,y0 and (vk, wk)k, orthonormal basis forgxk,yk
which tends to (v,w). One can write for allk, vk = akv+ bkw andwk = ckv+ dkw with
limk ak = limk dk = 1 and limk bk = limk ck = 0. We have(∫

T 2
|Dxk,ykψk|4/3dvgxk,yk

)3/4

=
(∫

T 2
|vk∇vkψk + wk∇wkψk|4/3dvgxk,yk

)3/4

=
(∫

T 2
|Dx0,y0ψk + θk|4/3dvgxk,yk

)3/4

.

with

|θk| = |(a2
k + c2

k − 1)v∇vψk + (b2
k + d2

k − 1)w∇wψk + (akbk + ckdk)

×〈w∇vψk + v∇wψk〉| ≤ αk|∇ψk|
where (αk)k is a sequence of positive numbers which tends to 0. Note that because of the
translation invariance of the metrics, the Levi-Civita connection does not depenpend onk.
Since limk gxk,yx = gx0,y0, one gets that(∫

T 2
|Dxk,ykψk|4/3dvgxk,yk

)3/4

≥
(∫

T 2
|Dx0,y0ψk|4/3dvgx0,y0

)3/4

−α′
k

(∫
T 2

|∇ψk|4/3dvgx0,y0
)3/4

where limk α′
k = 0. Together withLemma 5.1, we get that

(1 − Cα′
k)

(∫
T 2

|Dx0,y0ψk|4/3dvgx0,y0
)3/4

≤
(∫

T 2
|Dxk,ykψk|4/3dvgxk,yk

)3/4

(10)

whereC is a positive constant independent ofk. Now, in the same way, we can write

∫
T 2

〈ψk,Dx0,y0ψk〉dvgx0,y0 ≥
∫
T 2

〈ψk,Dxk,ykψk〉dvgxk,yk − βk

∫
T 2

|ψk||∇ψk|dvgx0,y0

where limk βk = 0. Using Ḧolder inequality, we have

∫
T 2

|ψk||∇ψk|dvgx0,y0 ≤
(∫

T 2
|ψk|4dvgx0,y0

)1/4(∫
T 2

|∇ψk|4/3dvgx0,y0
)3/4

.
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Using(6) and (7), this gives

∫
T 2

|ψk||∇ψk|dvgx0,y0 ≤ C

(∫
T 2

|Dψk|4/3dvgx0,y0
)3/2

.

We obtain∫
T 2

〈ψk,Dx0,y0ψk〉dvgx0,y0

≥
∫
T 2

〈ψk,Dxk,ykψk〉dvgxk,yk − βk

(∫
T 2

|Dψk|4/3dvgx0,y0
)3/2

.

Together with(10), we get(9). This immediatly implies that

lim inf
k

λ
xk,yk
min ≥ λ

x0,y0
min

and ends the proof of the proposition.�

Proof of Theorem 3.2. Any calculation in this proof will be carried out in Riemannian
normal coordinates with respect to a flat metric. In the following, (e1, e2) will denote the
canonical basis ofR2.

In order to prove lim(x0,y0)→(0,0) λ
x0,y0
min = λmin(S2) we will show that there is no sequence

(xk, yk) → (0,0) such that lim(xk,yk)→(0,0) λ
xk,yk
min < λmin(S2). We may assume thatλxk,ykmin <

λmin(S2) for all k. Note that the spectrum ofD is symmetric in dimension 2. By[3], we then
can find a sequence of spinorsψk of classC1 such that onTxk,yk

Dψk = λ
xk,yk
min |ψk|2ψk (11)

and such that∫
Txk,yk

|ψk|4dx = 1. (12)

Moreover, we have

Jxk,yk (ψk) = λ
xk,yk
min . (13)

Sometimes we will identifyψk with its pullback toR2. In this pictureψk is a doubly periodic
spinor onR2.

Step 1. There existsC > 0 such that for allk, we haveλxk,ykmin ≥ Cy
1/2
k .

Here and in the sequel,C will always denote a positive constant which does not depend
on k.

For the proof of the first step, we let� = {(x, y) ∈M1 | 1/2 ≤ y ≤ 3/2}. Since� is
compact and sinceλmin is continuous and positive, there existsC > 0 such that for all

λmin ≥ C on�. (14)
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Now, assume that

lim
k

λ
xk,yk
min

y
1/2
k

= 0.

We can find a sequence (Nk)k which tends to+∞ such that (3Nkxk,3Nkyk) ∈ �. Note that
the locally isometric coveringTpxk,pyk → Txk,yk ,p ∈ N, preserves the spin structures if and
only if p is odd. Letψ̃k be the pullback ofψk with respect to coveringT3Nk xk,3Nk yk

→ Txk,yk .
We now have∫

T
3Nk xk,3

Nk yk

|Dψk|4/3dx = 3Nk
∫
Txk,yk

|Dψk|4/3dx

and ∫
T

3Nk xk,3
Nk yk

〈ψk,Dψk〉dx = 3Nk
∫
Txk,yk

〈ψk,Dψk〉dx.

We then get by(14) that

C ≤ λ
3Nk xk,3Nk yk
min ≤ J3Nk (xk,yk)

(ψk) = 3Nk/2λxk,ykmin ≤ Cy
−1/2
k λ

xk,yk
min .

Step 2. There existsC > 0 such that for allk, we haveλxk,ykmin ≥ C.

Let η : R→ [0,1] be a cut-off function defined onR which is equal to 0 onR \ [−1,2]
and which is equal to 1 on [0,1]. We may assume thatη is smooth. Letvk = (xk, yk). Since
(e1, vk) is a basis ofR2, we can defineηk : R2 → [0,1] by

ηk(tvk + se1) = η(s)

Sincevk is asymptotically orthogonal toe1, we can findC > 0 independent ofk such that

|∇ηk| ≤ C (15)

Moreover, byCorollary 4.4, we have

(
∫
Zxk,yk

|Dηkψk|4/3dx)3/2

| ∫
Zxk,yk

〈ηkψk,Dηkψk〉dx| ≥ λmin(S2). (16)

Now, we write that(∫
Zxk,yk

|Dηkψk|4/3dx
)3/4

=
(∫

Zxk,yk

|∇ηkψk + ηkDψk|4/3dx
)3/4

≤
(∫

Zxk,yk

|∇ηkψk|4/3dx
)3/4

+
(∫

Zxk,yk

|ηkDψk|4/3dx
)3/4

.
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By (15)and Ḧolder inequality, we have(∫
Zxk,yk

|∇ηkψk|4/3dx
)3/4

≤ C

(∫
Zxk,yk∩Supp(∇ηk)

|ψk|4/3dx
)3/4

≤ C

(∫
Zxk,yk∩Supp(∇ηk)

|ψk|4dx
)1/4

Vol(Zxk,yk ∩ Supp(∇ηk))1/2.

We then have

Vol(Zxk,yk ∩ Supp(∇ηk)) ≤ 3yk.

By (12)andStep 1, this gives that

(∫
Zxk,yk

|∇ηkψk|4/3dx
)3/4

≤ Cy
1/2
k ≤ Cλ

xk,yk
min .

With the same argument and using relations(11) and (12), it follows that

(∫
Zxk,yk

|ηkDψk|4/3dx
)3/4

≤ 33/4λ
xk,yk
min

(∫
Txk,yk

|ψk|4dx
)3/4

≤ Cλ
xk,yk
min .

Finally, we get that(∫
Zxk,yk

|Dηkψk|4/3dx
)3/2

≤ C
(
λ
xk,yk
min

)2
. (17)

We now write that

∫
Zxk,yk

〈ηkψk,Dηkψk〉dx =
∫
Zxk,yk

〈ηkψk,∇ηkψk + ηkDψk〉dx.

Moreover, the left hand side of this equality is real sinceD is an autoadjoint operator. Since

∫
Zxk,yk

〈ηkψk,∇ηkψk〉dx ∈ iR.

Together with Eq.(11), this implies that

∫
Zxk,yk

〈ηkψk,Dηkψk〉dx =
∫
Zxk,yk

η2
kλ
xk,yk
min |ψk|4dx.
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Using(12), we obtain that∫
Zxk,yk

〈ηkψk,Dηkψk〉dx ≥ λ
xk,yk
min

∫
Txk,yk

|ψk|4dx = λ
xk,yk
min . (18)

Finally, plugging(17) and (18)in (16), we obtain thatλmin(S2) ≤ Cλ
xk,yk
min . This proves the

step.

Step 3. The functionλmin can be extended continuously toM1 ∪ {(0,0)} by setting
λ

0,0
min = λmin(S2).

In other words, we show that limk λ
xk,yk
min = λmin(S2). The method is quite similar than

the one of previous step. Letζk : R→ [0,1] be a smooth cut-off function defined onR
which is equal to 0 onR \ [−yk,1 + yk], which is equal to 1 on [0,1] and which satisfies
|∇ζk| ≤ 2/yk. As in the last step, we can defineγk : R2 → [0,1] by

γk(tvk + se1) = ζk(s).

Sincevk is asymptotically orthogonal toe1, we can findC > 0 independent ofk such that

|γk| ≤ C

yk
(19)

As in Step 2, we have

(
∫
Zxk,yk

|Dγkψk|4/3dx)3/2

| ∫
Zxk,yk

〈γkψk,Dγkψk〉dx| ≥ λmin(S2). (20)

We first prove that we can assume that∫
Zxk,yk∩Supp(∇γk)

|ψk|4dx ≤ Cyk. (21)

We letnk = [(2yk)−1] be the integer part of 2yk−1. For all l ∈ [0, nk − 1], we define

Ak,l =
{
te1 + svk|s ∈ [0,1[ andt ∈

[
l− (1/2)

nk
,
l+ (1/2)

nk

]}
.

The family of sets (Ak,l)l∈[0,nk−1] is a partition ofT ′
xk,yk

which is the image ofTxk,yk by the
translation of vector−(1/2nk)e1. By periodicity, (Ak,l)l∈[0,nk−1] can be seen as a partition
of Txk,yk . Consequently, we can write that

1 =
∫
Txk,yk

|ψk|4dx =
nk−1∑
l=0

∫
Ak,l

|ψk|4dx.
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Hence, there existsl0 ∈ [0, nk − 1] such that

∫
Ak,l0

|ψk|4dx = min
l∈[0,nk−1]

nk−1∑
l=0

∫
Ak,l

|ψk|4dx ≤ 1

nk
.

Obviously, without loss of generality, we can replaceψk byψk ◦ t0 wheret0 is the translation
of vector−l0e1. In this way, we can assume thatl0 = 0. By periodicity, Supp(∇γk) ⊂ Ak,0.
Hence,

∫
Zxk,yk∩Supp(∇γk)

|ψk|4dx ≤ 1

nk
.

Sincenk ∼ 2/yk, Eq.(21) follows.
Now, we proceed as inStep 2. We write that(∫

Zxk,yk

|Dγkψk|4/3dx
)3/4

=
(∫

Zxk,yk

|∇γkψk + γkDψk|4/3dx
)3/4

≤
(∫

Zxk,yk

|∇γkψk|4/3dx
)3/4

+
(∫

Zxk,yk

|γkDψk|4/3dx
)3/4

.

It follows from (19)and the Ḧolder inequality that(∫
Zxk,yk

|∇γkψk|4/3dx
)3/4

≤ C

yk

(∫
Zxk,yk∩Supp(∇γk)

|ψk|4/3dx
)3/4

≤ C

yk

(∫
Zxk,yk∩Supp(∇γk)

|ψk|4dx
)1/4

(Vol(Zxk,yk ∩ Supp(∇γk)))1/2.

Clearly, we have

Vol(Zxk,yk ∩ Supp(∇γk)) ≤ Cy2
k .

By (21), we obtain

(∫
Zxk,yk

|∇γkψk|4/3dx
)3/4

≤ Cy
−1+(1/4)+1
k ≤ Cy

1/4
k = o(1).

For the other term, we write, using(11)

(∫
Zxk,yk

|γkDψk|4/3dx
)3/4

=λxk,ykmin

(∫
Txk,yk

|ψk|4dx+
∫
Zxk,yk∩{0<γk<1}

|ψk|4dx
)3/4

.
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Clearly, we can constructγk such that{0< γk < 1} ⊂ Supp(∇γk). It then follows from
(21) that

(∫
Zxk,yk

|γkDψk|4/3dx
)3/4

≤ λ
xk,yk
min + o(1).

Finally, we obtain(∫
Zxk,yk

|Dγkψk|4/3dx
)3/2

≤ (λxk,ykmin )
2 + o(1). (22)

Now, as inStep 2, we write that

∫
Zxk,yk

〈γkψk,Dγkψk〉dx =
∫
Zxk,yk

γ2
k λ
xk,yk
min |ψk|4dx.

Using(12), we obtain that∫
Zxk,yk

〈γkψk,Dγkψk〉dx ≥ λ
xk,yk
min

∫
Txk,yk

|ψk|4dx = λ
xk,yk
min . (23)

Plugging(22) and (23)in (20), we obtain that

λmin(S2) ≤ (λxk,ykmin )2 + o(1)

λ
xk,yk
min

which implies that eitherλxk,ykmin → 0 orλxk,ykmin → λmin(S2). Hence,Step 2yields the state-
ment of the theorem. �
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